Elmomc Multi-Axis Motion Controller-Maestro Motion Contro Uživatelský manuál

Procházejte online nebo si stáhněte Uživatelský manuál pro Hardware Elmomc Multi-Axis Motion Controller-Maestro Motion Contro. ElmoMC Multi-Axis Motion Controller-Maestro Motion Control User Manual Uživatelská příručka

  • Stažení
  • Přidat do mých příruček
  • Tisk

Shrnutí obsahu

Strany 1 - Motion Control

Motion Control Library Tutorial January 2007 (Ver. 1.0)

Strany 2

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 7

Strany 3 - Contents

For this operator to work properly, the first line of the PVT table containing a text header must be removed. plot3(posX,posY,posZ) axis square; grid

Strany 4 - 1.2 Vector properties

Figure 1-5: Projection on the XZ plane Example (Motion Mathematic Lib Samples\ Vector_3D \ Helix – www.elmomc.com)

Strany 5 - ΔT = 0.5(vxt + vnt)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 10 Yc = Y - R*sin(Teta) // X coordinate of the helix axis v2.splines()

Strany 6 - 1.3.3 Spline

Inside the polyline operator parenthesis vector_name.starts(trj_name) and vector_name.ends() can be added function calls – addline(), addcircle(), add

Strany 7

3. vsc = 2 – ML builds switch arc with the switch radius vsr (this parameter must be set by the user). 4. vsc = 3 - ML builds a swit

Strany 8 - a = 100000

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 13

Strany 9

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 14 Figure 1-8: Recording of

Strany 10 - MAN-INTUG (Ver. 1.7)

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 15 Figure 1-9: Three-dimensional polygon drawn in

Strany 11

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 16 Figure 1-11: Pr

Strany 12

Notice This tutorial is delivered subject to the following conditions and restrictions:  This tutorial contains proprietary information belongi

Strany 13 - 1.3.4 Polyline

In fact, the value defined as r ≥ (vse) 2/(vae*vac ) (by default vae = 0.9) must be used in the calculations. 2. Implicitly pre-defined by the us

Strany 14

Input parameters and intersection geometry define the influence of a switch arc on a trajectory. The main cases of shapes intersection are considered

Strany 15

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-1 Chapter 2: Switch Radius Calculation 2.1 Line – line intersection If a traje

Strany 16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-2 vsr ≤ min(0.5ΔL1, 0.5ΔL2)*tg(γ/2)

Strany 17 -

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-3 r_max = dmax*tg(γ/2) = 50000* tg(0.5*0.1974) = 4951 This value is limiting a

Strany 18

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-4 vse = [r_switch*vac*vae]1/2 = [4455.9*500000*0.9]1/2 = 44778.9 Example 2.1c

Strany 19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-5 Line 1 is defined by its init point (300000, 900000) and end point (700000,2

Strany 20

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-6 2.2 Circle – line intersection Note: C – circle arc, L – line, R – circle

Strany 21

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-7 Figure 2-2 Example 2-2 (Motion Mathematic L

Strany 22 - MAN-MLT (Ver 2.0)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-8 Yp = Yc + K*(Xp – Xc) = 0 +0.7*(-46979 - 0) = -32885 And the perpendicular l

Strany 23

Contents Chapter 1: General Description ...11.1 Introduct

Strany 24

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-9 The length of the perpendicular h should also be calculated. By knowing the

Strany 25

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-10 Figure 2-4 In our calculations was not taken in account add

Strany 26

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-11 r = ρ1ρ2/(ρ1 + ρ2)

Strany 27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-12 ρ1= 100000 - |C/B| = 100000 - |(-3464101600.0)/(-90000)| = 61509.98222

Strany 28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-13 Figure 2-7 This condition is not always sufficient. Adequacy depends on a

Strany 29

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-14 Figure 2-8 Example 2-9 (Motion Mathematic Lib Samples\Circle to Line\ Se

Strany 30

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-15 Figure 2-9 Projection of the circle arc init point P1 on the line L does

Strany 31

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-16 Figure 2-10 Example 2-11 (Motion Mat

Strany 32

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-17 2.2.1.3 Line intersects the center of the circle Consider the last case of

Strany 33 - r = ρ

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-18 Figure 2-13 Example 2-14 (Motion Mathematic Lib Samples\Circle to Line\ S

Strany 34 - ) and an

Chapter 1: General Description 1.1 Introduction The Motion Library (ML) produces trajectories based on the PVT mechanism. It implements a set of fun

Strany 35

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-19 c) The circle arc sweeps an angle less than 90o and a perpendicular droppe

Strany 36

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-20 By (a1.6) we have Xp = (Yo – Y1 + kX1 – qXo)/(k – q) = (–80000 + 56569 – 5

Strany 37

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-21 ρ[(Xp,Yp),(X1,Y1)] = r

Strany 38

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-22

Strany 39 - β = 135

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-23 that produces r = [R2 – (ρ1)2 – (ρ3)2]/(2R + 2ρ1)

Strany 40

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-24 2.2.2.3 Circle center (Xc,Yc) Є L1 (line L1 intersects the center of the c

Strany 41 - 2-16

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-25 1. Circle init radius intersects with the line L continued in its positive

Strany 42

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-26 or rd = hd – hR – hr

Strany 43

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-27 Figure 2-24 2.2.3.2 Line parallel to the circle arc init radius a) Li

Strany 44 - 2-19

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-28 Figure 2-25b Maximum switch radius is perpendicular to the line L at the

Strany 45

general trajectory time (vtt) switch arc definitions (vsc, vsr, vsd) admissible velocity and position errors definitions (vpe,vve) PVT step low and hi

Strany 46

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-29 3. Know trajectory init point P2(X2,Y2), calculate ρ2 = ρ(p2, p1) = [(X2

Strany 47 - . The length of h

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-30 By (a3.6)-(a3.7) from Appendix 3. q1 = ΔX1/ΔY1= (34641-0)/(20000-0) = 1.732

Strany 48

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-31 2.3.1 One of two circle arcs intersects the internal area of the second If

Strany 49 - (2.2.3.2-1)

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-32 (Xo – Xc2)2 + (Yo – Yc2)2 = (R2 – r)2

Strany 50 - Example 2-27

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-33 (C1)2 + (C2)2 – 1 = [(X2 – X1)/d]2 + [(Y2 – Y1)/d]2 – 1 = d2/d2 – 1 = 0

Strany 51

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-34 (rC1 + C3)2 + (rC2 + C4)2 = (R2 – r)2

Strany 52 - Figure 2-28

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-35 (X2 + 65000)2 + (– 35000)2 = 1000002 that produces X2 = -158675. d = |X2 –

Strany 53

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-36 From (2.3.1-27) Figure 2-31 XoR1 – X1R1 = r(Xc1 – X1)

Strany 54

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-37 r2 C12 + (2C1C3)r + C32 + r2C22 + (2C2C4)r + C42 = r2 + (2R2)r + R22

Strany 55

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-38 Substituting into (4.1-32) (X2 + C1r – Xc1)2 + (Y2 + C2r – Yc1)2 =

Strany 56

1.3 Trajectory generation 1.3.1 Line Target position for a line is defined by the parameters of the function line(): Two-dimensional line V1.line(x,y)

Strany 57

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-39 2.3.2 Each circle intersects the internal area of the second Figure 2-33 sh

Strany 58

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-40 This system is similar to (2.3.2-2) – (2.3.2-4) and comes to the same solut

Strany 59

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-41 C1 = (X1 – Xc2)/R2 = -0.866025 C2 = (Y1 – Yc2)/R2

Strany 60

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-42 This system is similar to (4.2) – (4.4) and comes to the same solution r =

Strany 61

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-43 Consider the case that the sweep angle of the first circle is β1 < 90 an

Strany 62

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-44 r2C5 + rC6 + C7 = 0

Strany 63

Motion Library Tutorial Switch Radius Calculation MAN-MLT (Ver 2.0) 2-45 So for r, the results are: r = –C7/C6

Strany 64

Appendix A: Projection of a point on a line defined by the end points The line L is defined by its end points P1(X1,Y1) and P2(X2,Y2). Drop a perpendi

Strany 65

Y is from (a1.4). Coordinates (X,Y) of the intersection point line L and perpendicular are coordinates of projection point (Xp,Yp). Having got a proje

Strany 66

Appendix B: Coefficients of the line standard equation for the line defined by the end points If the line L is defined by its end points (X1,Y1) and

Strany 67 - Maestro Software Manual

Other popular types of splines like Bezier curves, B- splines or NURBS are usually not interpolation but smoothing splines. The spline curve does

Strany 68 - MAN-MLT(Ver. 2.0)

Appendix C: Intersection point of two lines defined by the end points Line L1 is defined by its end points P1(X1,Y1) and P2(X2,Y2). Line L2 is defined

Strany 69

or (X3 – X1)/∆X1 = (Y – Y1)/∆Y1 (a3.10) and f

Strany 70

Appendix D: Circle – line intersection points The line is defined by its end points (X1,Y1) and (X2,Y2). The circle is defined by its radius R and c

Strany 71 - MAN-MLT (Ver. 2.0)

1.3.3.1 Examples for the two-dimensional spline interpolation Example Example (Motion Mathematic Lib Samples\ Vector_2D \ Spline_Ellipse – www.elmomc.

Strany 72

Maestro Motion Library Tutorial MAN-INTUG (Ver. 1.7) 6 for t = 0:pi/72:2*pi x = R*cos(3*t) y = R*sin(5*t) v1.splinep(x,y) // add spline po

Komentáře k této Příručce

Žádné komentáře